Counting rational points on cubic and quartic surfaces

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rational Points on Cubic Surfaces

Let k be an algebraic number eld and F (x0; x1; x2; x3) a non{singular cubic form with coeecients in k. Suppose that the pro-jective cubic k{surface X P 3 k given by F = 0 contains three coplanar lines deened over k, and let U (k) be the set of k{points on X which does not lie on any line on X. We show that the number of points in U (k), with height at most B, is OF;"(B 4=3+") for any " > 0.

متن کامل

Rational points on diagonal quartic surfaces

We searched up to height 107 for rational points on diagonal quartic surfaces. The computations fill several gaps in earlier lists computed by Pinch, Swinnerton-Dyer, and Bright.

متن کامل

Counting Rational Points on Cubic Hypersurfaces

Let X ⊂ P be a geometrically integral cubic hypersurface defined over Q, with singular locus of dimension 6 dimX − 4. Then the main result in this paper is a proof of the fact that X(Q) contains Oε,X(B ) points of height at most B.

متن کامل

Counting Rational Points on Cubic Hypersurfaces: Corrigendum

R0<b162R0 gcd(b1, N )1/2 R 0 (HP) . The second line is false and in fact one has M1 = 1 in Proposition 3. The author is very grateful to Professor Hongze Li for drawing his attention to this flaw. The error can be fixed by introducing an average over b1 into the statement of Proposition 3. This allows us to recover the main theorem in [1], and also [2, Lemma 11], via the following modification....

متن کامل

COUNTING POINTS ON CUBIC SURFACES II Sir

Let V be a non-singular surface defined over Q which is embedded in projective space P by means of anticanonical divisors, and let U be the open subset of V obtained by deleting the lines on V . For any point P in U(Q) denote by h(P ) the height of P . In this paper h will usually be the standard height h1(P ) = max(|x0|, . . . , |xn|) where P = (x0, . . . , xn) for integers xi with highest com...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta Arithmetica

سال: 2003

ISSN: 0065-1036,1730-6264

DOI: 10.4064/aa108-3-7